аIJʹÙÍø

Algebra

Personalise
The research areas of the Department comprise Algebra; Combinatorics; Functional and Harmonic Analysis; Geometry and Mathematical Physics; and Number Theory.

The algebra of multiplication arises naturally in a plethora of different contexts, such as symmetries and differential operators. The abstract study of these has led to the notions of groups and rings which are the foundation of modern algebra. The research interests of the Algebra group spans a wide spectrum including homological algebra, group theory, quantum groups, representation theory and noncommutative algebra.Ìý

Group members

Research interests

Daniel Chan

Interested in various noncommutative algebras arising from noncommutative algebraic geometry. These include orders, Sklyanin algebras, Clifford algebras and twisted co-ordinate rings. He has studied noncommutative Grothendieck duality theory and the McKay correspondence.

Peter Donovan
Now semi-retired, Peter has publications in algebraic geometry (localisation at fixed points). algebraic topology (related to geometrical physics), representation theory (including the first non-trivial progress towards a key finiteness conjecture in the modular representation theory of finite groups), homological algebra and the insecurity of Japanese naval ciphers in WW2. Currently his interests are returning to modular representation theory and geometrical physics.

Jie Du
His interests lie in the representation theories on algebraic and quantum groups, finite groups of Lie type, finite dimensional algebras, and related topics. His recent work has concentrated mainly on the Ringel-Hall approach to quantum groups and q-Schur and generalised q-Schur algebras and their associated monomial and canonical basis theory. He is also interested in combinatorics arising from generalised symmetric groups, Kazhdan-Lusztig cells and representations of finite algebras.

Pinhas Grossman
Interested in fusion categories and planar algebras. He is particularly interested in the representation theory of fusion categories coming from von Neumann algebras.

Chi Mak
Interested in Coxeter groups, complex reflection groupsÌýand their Hecke algebras.Ìý

Anna Romanov
Works in geometric representation theory. Some objects that she likes to think about are Lie algebras, Lie groups, equivariant sheaves, D-modules, Soergel bimodules, and Kazhdan-Lusztig polynomials.

Alex Sherman

Interested in representation theory of finite groups, Lie groups, and Lie algebras, particularly in connection to (exotic) tensor categories and algebraic geometry.Ìý A lot of his work has looked at the representations of complex Lie supergroups.

Behrouz Taji
Is an algebraic geometer, interested in interactions betweenÌýbirational geometry,ÌýHodge theory,Ìýmoduli spacesÌýandÌýcanonical metrics.

Mircea Voineagu
His research lies at the intersection of algebraic geometry, algebraic topology and homological algebra.ÌýIn particular, he is interested in motivic cohomology, a new cohomological theory for algebraic varieties introducedÌýby V. Voevodsky, and in the K-theory of algebraic varieties.

Norman Wildberger
His interest in the theory of hypergroups has led him into description of various finite hypergroups. These have rather interesting algebraic properties and may be applied in the study of diophantine equations.